Embora eu não seja de uma vertente que defenda a aquisição de conhecimento de forma utilitária, eu sempre usei os conhecimentos que aprendi no meu dia a dia. Acredite, pode-se resolver muitos problemas do cotidiano de uma casa com aquilo que é ensinado no ensino médio.

Eu devia estar pelo meu quarto ou quinto período do bacharelado em física na época. Estava na casa de uma tia, aproveitando para visitar meu amigo que chegava de Curitiba para passar férias aqui, em nossa cidade natal, Manaus. Uma coisa que todos devem saber sobre nossa cidade é que ela é quente e úmida, o que a deixa ainda mais quente, por isso, o uso de ventiladores, em ambientes abertos, é tão comum. Era fim de tarde quando a tia ligou um ventilador no canto sala de jantar, neste canto também fica a porta de um dos quartos. Foi então que observei algo que sempre vi naquela casa, mas nunca me tinha prendido a atenção.

Quando o ventilador se movimentava de forma que seu vento ficasse paralelo à porta do quarto, que estava entreaberta, ela era “sugada”. Isso mesmo, em vez de a porta abrir mais, ela tendia a fechar. Pela primeira vez, aquilo me prendeu a atenção e eu me pus a pensar. Fiquei bastante animado com isso! Era algo tão comum e eu nunca tinha me prendido.

A solução que encontrei, na época, foi a famosa equação de Bernoulli para os fluidos, aquela mesma que é creditada à explicação do voo de aviões. Para quem não conhece, vou escrevê-la:

Ela tem a ver com a conservação de energia no fluxo de um fluido e nos diz que pressão (p), energia potencial gravitacional (ρgh), em que “h” é a altura e “g” é aceleração da gravidade, e energia cinética (ρv 2 ), em que “v” é a velocidade do fluido, tem uma relação que se mantém constante dado por sua soma.

Tá meu querido, mas o que isso tem a ver com a porta querendo fechar? Desde quando pressão é energia?

Bom, pasmem, de fato, pressão não é energia, mas pode ser interpretada como uma densidade de energia. Esse é o motivo dos outros termos serem escritos com , uma densidade, em vez de m, uma massa. Quanto à porta querendo fechar, veja bem, a equação nos diz que a soma desses três termos devem se manter constante, certo?! Aquele  é a velocidade do meu fluido do lado de fora da porta, antes do ventilador ser ligado. A velocidade do ar, o fluido na frente da porta, era quase zero, porém, quando o ventilador joga seu vento de forma paralela à porta, essa velocidade do fluido cresce, cerca de uns 4-7 m/s. Bom, se a velocidade cresce, a energia cinética cresce e como nossa soma tem que se manter constante, algo tem que diminuir. Não pode ser a parte potencial gravitacional, afinal, não apontamos o ventilador para cima, restando, para nós, a pressão. Sim, a pressão na frente da porta, onde o ventilador estava atuando, diminui, mas a pressão na parte de trás da porta, onde não estava ventilando, se mantém a mesma, o que empurra a porta para que se feche.

E por que a porta não se fecha então?

O mesmo vento que aumenta a velocidade do ar na frente da porta, também empurra a porta quando ela tende a fechar. Afinal, no início o vento é paralelo à porta, mas, quando ela faz seu movimento para fechar, a porta deixa de estar paralela e passa a ter grande parte de si na frente da direção para onde está indo o vento que o ventilador empurra, fazendo com que o vento agora a empurre.

Fantástico, não?! Eu acho fantástico.

O mais fantástico disso tudo é que essa é a mesma física que explica como bolas podem ter efeitos em jogos. Sabe, bolas de futebol, de basebol, tênis e tantas outras? As famosas bolas curvadas (ou bolas com efeitos) podem ser explicadas com essa explicadas com essa equação. Imagine comigo, quando uma bola é jogada, arremessada ou chutada para fazer curva, o jogador tem que fazer com que ela gire. Se ele conseguir, a bola vai se movimentar pelo ar com essa rotação, arrastando parte do ar ao seu redor, afinal, atrito existe. Por sua vez, essa rotação faz com haja uma diferença de velocidades no ar ao redor da bola

Figura 1: Bola girando. ALMEIDA;SILVA (2015)

gerando uma diferença de pressões e, voila! Uma bola que faz curva pelo mesmo princípio que fez a porta da casa de minha tia tender a se fechar (melhor do que imaginar é ver, então, clica aqui). Inclusive, é por isso que a bola de alguns esportes tem ranhuras bem específicas. Mexer nessas ranhuras altera o atrito dessas bolas com o ar e, consequentemente, a habilidades dos jogadores de fazer aquelas bolas curvas no meio da partida. É por isso também que, aquela bola “dente de leite”, vendida na vendinha da dona Maria, fazia aqueles movimentos mucho locos quando você ia bater aquela pelada com os amiguinhos.

Mais uma vez, fantástico! Afinal é uma equação física escalar, ou seja, só é aquilo mesmo, não é como a força que é vetorial e por isso suas equações se desdobram em outras três. Uma equação que usa apenas energia é pequena e simples de ser entendida e explica muitas coisinhas legais.

Incluindo o voo dos aviões?

Bom, desculpe te jogar esse balde de água fria, mas, não, a equação de Bernoulli para os fluidos não é o que explica como os aviões voam, embora isso seja muito difundido. Eu mesmo acreditava que era essa a explicação e vivia dizendo a meus alunos que “a física que faz a bola fazer curva era a mesma física que faz o avião voar”. Contudo, isso mudou quando eu comecei a pesquisa para escrever esse texto.

Mas, por quê?

Bem, primeiro, essa equação, como eu apresentei a vocês é muito bonitinha, e, se eu quiser modelar o mundo real, vou precisar de mais parâmetros, como, por exemplo, considerar que os fluidos podem ser comprimidos. Segundo, mesmo que eu considere esse fator de compressibilidade dos fluidos, como o ar, para a minha equação, o efeito descrito por ela corresponderá apenas a uma pequena fração da sustentação do meu avião em voo. Vou deixar nas referências um artigo que explica direitinho como os aviões voam, afinal esse não é o foco do texto e me levaria a me estender bem mais para explicar essa parte.

Com essa decepção que eu trouxe a alguns no final desse texto, vocês podem estar se perguntando se aquela equação ainda serve para explicar o que eu disse no início, afinal, o ar é comprimível. É verdade, ele o é, mas lembram da velocidade que eu falei (4-7 m/s)? Nessa velocidade, esse efeito pode ser desconsiderado. O bom disso é que mostra como modelos simples podem ser muito bons, mesmo sem explicar tudo. Isso é parte do trabalho de um físico, saber identificar o que é mais relevante e o que pode ser, em certa aproximação, desconsiderado ao tentar explicar algo.

Referências

[1] DE ALMEIDA, B. S. G.; SILVA, R. C. Aerodinâmica de Bolas. Revista Brasileira de Ensino de Física, v. 37, n. 3, p. 3505, 2015.

[2] ANDERSON, D.; EBERHARDT, S. Como os Aviões Voam: Uma Descrição Física do Voo.  Física na Escola, v. 7, n. 2, p. 43-51, 2006.

 


Emerson Souza. Cientista desde criança, bacharel em física desde 2019 e matemática de coração.